Clinical evidence that very small embryonic-like stem cells are mobilized into peripheral blood in patients after stroke.

نویسندگان

  • Edyta Paczkowska
  • Magda Kucia
  • Dorota Koziarska
  • Maciej Halasa
  • Krzysztof Safranow
  • Marek Masiuk
  • Anna Karbicka
  • Marta Nowik
  • Przemyslaw Nowacki
  • Mariusz Z Ratajczak
  • Boguslaw Machalinski
چکیده

BACKGROUND AND PURPOSE In a murine model of stroke, we identified a population of very small embryonic-like (VSEL) stem cells (SCs) in adult murine bone marrow that could be mobilized into peripheral blood (PB). This raised the question of whether a similar population of cells is mobilized in human stroke patients. METHODS We evaluated a number of cells that corresponded to VSEL SCs in the PB of 44 stroke patients and 22 age-matched controls. After each patient's stroke, PB samples were harvested during the first 24 hours, on day +3, and on day +7 and then compared with normal controls. The circulating human cells with the phenotype of VSEL SCs were evaluated in PB by real-time quantitative polymerase chain reaction, fluorescence-activated cell sorting analysis, and direct immunofluorescence staining. In parallel, we also measured the serum concentration of stromal derived factor-1 by ELISA. RESULTS In stroke patients, we found an increase in the number of circulating cells expressing SC-associated antigens, such as CD133, CD34, and CXCR4. More important, we found an increase in the number of circulating primitive cells expressing the VSEL phenotype (CXCR4(+)lin(-)CD45(-) small cells), mRNA for Octamer-4 and Nanog, and Octamer-4 protein. All changes were accompanied by an increased serum concentration of stromal derived factor-1. Additionally, we found a positive correlation between stroke extensiveness, stromal derived factor-1 concentration in serum, and the number of CXCR4(+) VSEL SCs circulating in the PB. CONCLUSIONS We conclude that stroke triggers the mobilization of CXCR4(+) VSEL SCs that have potential prognostic value in stroke patients. However, the potential role of these mobilized cells in brain regeneration requires further study.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Applications of Cell Therapy in Vascular Surgery

Trying to use embryonic stem cells about 20 years ago, working with animals,  especially rats began. During these years , many experiments in mouse embryonic stem cells to transform into a variety of cells and transplanting them were led to remarkable success . In the next issue of human stem cells were considered successful until finally in 1998 the first report was published in the proliferat...

متن کامل

Advances in Hematopoietic Stem Cell Mobilization and Peripheral Blood Stem Cell Transplantation

Hematopoietic stem/progenitor cells (HSPCs) which give rise to different blood cell types are present within the bone marrow microenvironment, especially in flat bones such as skull, vertebrae, pelvis and chest. Interacting factors such as stromal derived factor-1/CXCR4, very late antigen-4/vascular cell adhesion molecule-1, Lymphocyte function-associated antigen-1/ intercellular adhesion molec...

متن کامل

Evidence that the population of quiescent bone marrow-residing very small embryonic/epiblast-like stem cells (VSELs) expands in response to neurotoxic treatment

The concept that bone marrow (BM)-derived cells may participate in neural regeneration remains controversial, and the identity of the specific cell type(s) involved remains unknown. We recently reported that the adult murine BM contains a highly mobile population of Sca-1(+) Lin(-) CD45(-) cells known as very small embryonic/epiblast-like stem cells (VSELs) that express several markers of pluri...

متن کامل

Very small embryonic-like stem cells: characterization, developmental origin, and biological significance.

Bone marrow (BM) was, for many years, primarily envisioned as the "home organ" of hematopoietic stem cells (HSC). Augmenting evidence demonstrates, however, that BM, in addition to HSC, also contains a heterogeneous population of non-HSC. Recently, our group identified in BM and other adult tissues a population of very small embryonic-like stem cells (VSELs), which express several markers chara...

متن کامل

Very small embryonic-like stem cells: biology and therapeutic potential for heart repair.

Very small embryonic-like stem cells (VSELs) represent a population of extremely small nonhematopoietic pluripotent cells that are negative for lineage markers and express Sca-1 in mice and CD133 in humans. Their embryonic-like characteristics include the expression of markers of pluripotency; the ability to give rise to cellular derivatives of all three germ-layers; and the ability to form emb...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Stroke

دوره 40 4  شماره 

صفحات  -

تاریخ انتشار 2009